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ABSTRACT 
Wireless sensor network (WSN) have gained much more attention from researchers. WSN makes the use of sensor 

nodes generally battery-operated .Their prevalence is threatened by a number of technical difficulties, especially the 

shortage of energy. To overcome this problem, we propose a smart reduction in data communication by sensors. In 

order to reduce the measurements, we present a data prediction method based on neural networks which performs an 

adaptive, data-driven, and non-uniform sampling. Evidently, the amount of possible reduction in required samples is 

bounded by the extent to which the sensed data is stationary. The proposed method is validated on simulated and 

experimental data. The results show that it leads to a considerable reduction of the number of samples required (and 

hence also a power saving) while still providing a good approximation of the data. 

KEYWORDS: Data-driven sampling, Energy consumption, Neural data prediction, Sensor networks

INTRODUCTION 

Wireless sensor networks (WSN) have received a 

great attention in recent years. They have a wide 

variety of applications such as event detection, target 

tracking, environment sensing, elder people 

monitoring, and security[1-8].A wireless sensor 

network consists of sensor nodes deployed over a 

geographical area for monitoring physical phenomena 

like temperature, humidity, vibrations, seismic events, 

and so on [9]. 

A WSN is usually made up of a large number of 

sensors that communicate their sensed information to 

other nodes. Typically, a sensor node is a tiny device 

that includes three basic components: a sensing 

subsystem for data acquisition from the physical 

surrounding environment, a processing subsystem for 

local data processing and storage, and a wireless 

communication subsystem for data transmission. In 

addition, a power source supplies the energy needed 

by the device to perform the programmed task. This 

power source often consists of a battery with a limited 

energy budget. In addition, it could be impossible or 

inconvenient to recharge the battery, because nodes 

may be deployed in a hostile or unpractical 

environment. On the other hand, the sensor network 

should have a lifetime long enough to fulfil the 

application requirements. In many cases a lifetime in 

the order of several months, or even years, may be 

required. Therefore, the question is: “how to extend 

the network lifetime for long time?”  In some cases it 

is possible to scavenge energy from the external 

environment [10] (e.g., by using solar cells as power 

source). However, external power supply sources 

often exhibit a non-continuous behaviour so that an 

energy buffer (a battery) is needed as well. In any case, 

energy is a very critical resource and must be used very 

sparingly. Therefore, energy conservation is a key 

issue in the design of systems based on wireless sensor 

networks. In this paper, data prediction is employed 

[13, 14]. Sensors are often supplied with scarce energy 

resources. Hence, energy saving is crucial to the 

operation of WSNs, and devising methods for efficient 

power consumption is central to the research in this 

area. 

 

 
Fig 1.  Sensor Network Architechture 
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ENERGY CONSTRAINTS 
Energy is required in every mini or major operation of 

any type   of application. . Sensors are equipped with 

batteries, but these batteries do have a limited life time, 

e.g. in underwater scenario, there are no plug-in 

sockets to provide the power as per the requirement. 

Sensors has scarce energy resources and hence energy 

saving is crucial for operation. Energy-Efficient 

networking protocols and devising method for 

efficient power consumption are required now days. 

The communication subsystem has a much higher 

energy consumption than the computation subsystem. 

It has been shown that transmitting one bit may 

consume as much as executing a few thousands 

instructions. Therefore, communication should be 

traded for computation. The radio energy consumption 

is of the same order in the reception, transmission, and 

idle states, while the power consumption drops of at 

least one order of magnitude in the sleep state. 

Therefore, the radio should be put to sleep (or turned 

off) whenever possible.  Depending on the specific 

application, the sensing subsystem might be another 

significant source of energy consumption, so its power 

consumption has to be reduced as well [11]. 

 

ENERGY CONSERVATION SCHEMES 
Many approaches were proposed to reduce the power 

consumption of a sensor network, but three main 

techniques are the most important among them duty 

cycling, data-driven approaches, and mobility [12]. 

Since duty cycling patterns are unaware of data which 

are gathered from sensor nodes, data-driven 

approaches are more appropriate to reduce the energy 

consumption of the WSNs. The microcontroller can 

switch on the sensors only during the measurement, 

reducing the power consumption [4, 5].  

Nevertheless, unneeded communications could 

sporadically happen because of transferring 

unnecessary data. Reducing extra communications is a 

way to save energy which can be followed by data-

driven techniques. While ‘energy-efficient data 

acquisition’ schemes are mainly concerned with 

decreasing power consumption relevant to the sensing 

subsystem, ‘data reduction’ schemes focus on 

unneeded samples. 

 

PROPOSED METHOD 
In this paper an innovative method is proposed and the 

same is tested on simulated and experimental data. A 

neural algorithm is considered to forecast sensor 

measurements .The uncertainties in sensor 

measurement allow the system to reduce 

Communications and transmitted data. A multilayer 

perceptron (MLP) [15] network is used. The central 

control unit of MLP decides when and from which 

sensor to acquire a new sample, without scheduling a 

periodical sampling. In order to save energy there is no 

transition in the period between two acquisitions. 

 

METHODS 
Algorithm for efficient sampling 

The main aim of neural algorithm is to reduce the 

number of acquired data. Instead of acquiring we 

predicted them and estimated the uncertainty of the 

prediction. But when the associated uncertainty 

increases above a threshold level an additional 

measurement was required from a sensor. Each 

available measurement along with its uncertainty was 

considered together, assumed to be equal to the 

accuracy of the sensor. A MLP   periodically performs 

a forward prediction on 100 realizations of stochastic 

inputs extracted from a uniform probability 

distribution with mean and range given by the 

available data and their uncertainty, respectively. The 

prediction was computed as the mean of the obtained 

100 estimations. The uncertainty of the prediction U 

was defined in terms of two contributions U1 and U2. 

The first contribution U1 was the dispersion of the 

predictions, and defined as the range of the estimations 

provided by the MLP from the 100 random trials. The 

second contribution U2 was the estimated rate of 

prediction error: 

U2 = 
1

2
 (
|𝑝𝑗−𝑚𝑗|

𝜏𝑗−𝜏𝑗−1
 +  

|𝑝𝑗−1− 𝑚𝑗−1|

𝜏𝑗−1−𝜏𝑗−2
)                      (1) 

Where pj indicate the jth predicted value and mj 

indicate measured value, respectively (so that |pj −mj| 

is the prediction error), τj is the time sample in which 

the jth measurement is taken (so that τj − τj − 1 is the 

time delay between the jth and the previous 

measurement). Thus, U2 is the mean of the last two 

estimated ratios between the prediction error and the 

time delay from the last measurement . The 

uncertainty U is defined as convex combination of the 

two contributions. 

U=𝛼𝑈1+ (1 − 𝛼)𝑈2                          (2) 

Where the parameter α (with 0 < α < 1) weights the 

importance of U1 and U2. When the same algorithm is 

tested on different datasets. α is considered 0.5 in the 

following. For specific applications, a different weight 

could be considered. When the uncertainty of the 

predicted measurement was larger than a threshold 

(chosen as sensor specific) a new acquisition was 

required from a sensor. Thus, the MLP was used to 

estimate when and from which sensor to acquire a 

measurement. This helps to reduce the number of 

measurements and, consequently, also the power 

consumption. Once the measurement are acquired  

from a sensor, with the help of  interpolating method, 
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its present and past data were updated and the acquired 

measurements and their uncertainties were updated 

according to the sensor accuracy. 

 

Data test bed 

Simulated and experimental data were used to test the 

algorithm. 

 

Simulated data 

Simulated data are normally considered to be noise 

free and deterministic. Two different simulations are 

considered. The first one consist the following two 

signals 

x1 (t) = sin (2Π𝑓(𝑡)𝑡) 
 

x2(t)=a(t)x1(t)                                                   (3) 

 

where t is the time ( 0 to 200 s range, sampled at 20 

Hz), f(t) is a square wave varying between 0.5 and 1.0 

Hz with period 20 s and a(t) = 4 + sin(0.15πt).Signal 

were quantized, in order to have resolution 0.05 . The 

x1 signal and x2 signal are first used separately, then 

together. In  second set of simulations, two 

uncorrelated signals are taken and sampled every 0.1 s 

for 60 min. 

In Chaotic regime [16] the sinusoid signal with 

frequency 0.1 Hz is first signal, and the second is 

defined as the first component y1 of the solution [y1 y 

2 y3] of a Lorenz system. 

 

{
 
 

 
 

  

𝑑𝑦1 

𝑑𝑡
=  −10(𝑦1 − 𝑦2)

𝑑𝑦2

𝑑𝑡
= 28𝑦1 − 𝑦2 − 𝑦1𝑦3
𝑑𝑦3

𝑑𝑡
= 𝑦1𝑦2 −

8

3
𝑦3

                (4) 

 

Experimental data 

Even for performing experimental data two different 

data are considered. The first dataset constituted of 

meteorological data from four sensors acquired every 

15 min. The sensors measures temperature, pressure, 

wind velocity, and humidity, located at the Turin-

Caselle airport, for 100 days from June to August 

2010[17].The second dataset, temperature and 

humidity  was gathered from two sensors of a 

Bluetooth-based acquisition system . The structure of 

the WSN is shown in Figure 1. A smartphone was used 

to communicate with sensors and reads data from them 

separately. The Free2Move Bluetooth module 

F2M03GLA was attached to the device. When the 

device is waiting for connection it consumes about 44 

mW and 108 mW during the transmission. By 

Bluetooth module data is received from the UART 

interface of the microcontroller and forwards it to a 

receiver using the serial port profile (SPP) service. The 

device is operated by a 3-V lithium battery (CR2247 

from Motorola) with 1,000 mAh. The sensors were 

fixed on a carrier, and their location was changed 

frequently in three different locations in a laboratory: 

close to a cold or to a warm source and far from heat 

sources. The sources were sufficient to prompt 

changes on temperature and humidity up to 5°C and 

10%, respectively. Every 15s data were recorded for 

about an hour. 
 

 
Fig 4. Bluetooth-Based Acquisition System of the Environmental Data Using a Smartphone 
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RESULTS AND DISCUSSION 

 

 
Fig 5. Application of the Method to Non-stationary, Correlated signals . (A) Relation between reduction ratio and error (100 

simulations with different thresholds are considered). (B) Samples for the portions of the signals with higher frequency versus 

those with lower frequency (same 100 simulations as in A). (C) Representative example application for the method. 

 
Fig 6. Application of the Algorithm to Simulated Data. (A) Number of samples and mean estimation error (mean and standard deviation over 

ten repetitions). (B) Representative example (threshold = 0.03 for both signals

Fig 7. Application of the algorithm to meteorological experiments. Accuracy is assumed to be 0.2°C, 20 hPa, 0.1 km/h, and 1%, for the 

temperature, pressure, wind velocity, and humidity sensors, respectively. (A) Root mean square estimation error and reduction ratio as 

functions of the uncertainty threshold (20 repetitions are considered). (B) Example of application to a portion of the test set. 
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Fig 8. Application of the Algorithm to Indoor Experiments. (A) Root mean square (RMS) estimation error, and (B) reduction ratio as 

functions of the uncertainty threshold (assumed proportional to sensor accuracy; the method was run 100 times for each choice of the 

threshold, mean and standard deviations are shown). The accuracy was assumed to be 0.1°C and 0.3%, for the T and H sensors, respectively. 

(C) Representative example application for our method: uncertainty of the measurements was assumed to be two times the accuracy.

 

Fig 5 and 6 show the application of the method to 

simulated signals. In Figure 5, consist of  correlated 

non-stationary signals . Panel A shows, the method 

using the combination of the two signals has a lower 

slope of the reduction ratio versus estimation error. 

This gives higher performances when information is 

jointly extracted from the two correlated signals. But 

this method selects more samples for the portions of 

the signals with higher frequency as shown in Fig 5B, 

the ability to adapt in time to temporal variations of the 

signal. In Fig 6, the chaotic and the sinusoidal signals 

are considered. Prediction of the sinusoid signal is 

simpler than that of the chaotic signal; thus the 

algorithm select more measurement to sample 

appropriately the second signal (in panel A). In Fig 7, 

a representative example application for our algorithm 

to our first bunch of experimental data is shown 

(meteorological data). The MLP used was trained and 

validated on the basis of the first 80 days. Then, it was 

applied on the following test set 20 days considered in 

Fig 7. Panel A shows, the results of many applications 

of the prediction algorithm to the test experimental 

data, with different thresholds. As expected, increase 

in threshold, increases the reduction factor, at the 

expense of decreasing the accuracy in estimating the 

measurements. Panel B shows, a portion of the test 

data. Wind velocity sensors requires more number of 

samples among the four sensors, reflecting the erratic 

dynamics of the signal. Whereas, the sampling of 

humidity has smooth variations correlated with 

temperature and has the lowest rate. The second bunch 

of experimental data used as an example application 

for our algorithm is shown in Fig7 (indoor experiment 

with a WSN). Humidity and temperature values are 

clearly correlated when measured from the same  

 

sensor. Figure 7 shows the results of many 

applications of the prediction algorithm to the test 

experimental data with different thresholds. Again, by 

increasing the threshold, the reduction factor increases 

and the accuracy in estimating the measurements 

decreases. This paper proposes the possibility of 

reducing the amount of communications and the 

power consumption of a sensor network by a smart 

sampling of data. Since implementing Bluetooth-

based acquisition system is the most expensive task in 

terms of power consumption in WSNs, energy saving 

can be obtained by timely replacing read data with 

predicted data. In a network, by reducing the number 

of measurements save lots of power or memory. To 

determine when and which sensor to interrogate an 

innovative and general method is discussed based on a 

data prediction approach. Data prediction is also 

applied [18] where data are predicted and streamed 

only when the mismatch with respect to the acquired 

measurement is higher than a threshold. Even Kalman 

filter is used in [19] for prediction with similar 

approach. On other hand base station is used in [20] to 

perform prediction instead of nodes. Another method 

to reduce power consumption in wireless sensor 

network is data aggregation [21].  

The proposed neural algorithm estimates a prediction 

uncertainty for each sensor in the network during the 

monitoring. A particular sensor is interrogated when 

its uncertainty is above a threshold, which can be 

selected by the user. The algorithm to estimate the 

sensor uncertainties is based on a tool for data 

forecasting. It is used to estimate the rate of increasing 

of the prediction error and the future dispersion of the 

predictions due to the uncertainty contained in the 

available data. Two contributions related to the 
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predicted errors and to the dispersion of the 

predictions are given the same weight and linearly 

combined for the estimation of the uncertainty 

associated to the sensor. 

The method was implemented and tested on both 

simulated and experimental data. Simulated data were 

examined to analyse the algorithm correctness. 

Moreover, when applied to two correlated signals, the 

method improved the performances with respect to the 

case in which it was applied on the two signals 

separately. Finally, the method required more samples 

to describe a chaotic system than a simple periodic 

one. All these results are in line with our expectations 

and confirm the reliability of the proposed method. 

When applied to meteorological data, the method was 

able to reduce the number of acquired samples with 

low estimation errors. More samples were recorded 

from the sensor monitoring the wind velocity, which 

provided a very erratic signal, with respect to 

temperature, pressure, and humidity, which showed 

regular and correlated variations. Notice that only a 

representative application is here considered: for 

practical applications, as only average information on 

wind velocity is usually of interest, subsequent 

measured or estimated samples could be averaged, 

reducing further the data to be effectively transmitted. 

The result of our method to indoor environmental data 

and outdoor application is in line. By observing the 

power consumed by the sensors during transmission 

and when in the idle state, some considerations could 

be made on the power that could be saved using our 

algorithm to reduce the number of measurements. 

Considering the indoor application, a reduction of the 

50% of samples (getting an estimation error of about 

35%, see Fig 8) allows to decrease the power 

consumption of about 7.5%; for the outdoor 

application here considered, data could be reduced to 

70% (guaranteeing an estimation error lower than 

20%, see Figure 7); thus, by scaling the acquisition and 

sampling times, a 10% of power saving could be 

obtained. 

The results of the application of our method appear to 

be promising, even if a basic and general method was 

considered. Following the same ideas, more 

sophisticated methods could be developed, in order to 

better fit specific applications. For example, only the 

last two (measured or predicted) samples are here 

considered as the inputs of the prediction algorithm. 

This choice is due to the general applications 

discussed here, where four different datasets were 

processed by the same algorithm. However, different 

inputs can be chosen (e.g., the average values of data 

on long periods, often used in meteorological 

forecasting applications, or delayed samples with an 

optimally chosen delay, or simply more than two 

values could be used from each sensor; the methods of 

time series embedding [22] could be used to support a 

proper selection of the optimal delay and of the 

number of delayed values to characterize better each 

sensor). Moreover, a simple MLP was used for data 

prediction. Different alternative methods could be 

applied instead but still following the main general 

ideas of this paper. For example, different neural 

networks or fuzzy rule-based systems can be used 

[23]. Also, a single MLP is used here to predict all the 

measurements of the sensors, but different MLPs 

could be used, one for each sensor. The method 

estimates the uncertainty of the predicted 

measurements as the average of two contributions: 

different combinations can fit specific applications 

better. Moreover, a linear increase of the prediction 

error, including a memory term, is here assumed, but 

a more sophisticated (nonlinear, adaptive) algorithm 

can be introduced in the future to estimate better the 

raise of the prediction error in time. 

 

CONCLUSION 
This proposed method to make a smart sampling from 

sensors, in order to avoid unneeded measurements 

and, consequently, to reduce power consumption. In 

future different variants can be proposed to fit specific 

applications. 
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